#ECTRIMS2021: EBV as a therapeutic target; another Lazarus effect?

Barts-MS rose-tinted-odometer: ★★★★★★
(6-stars calls for a bright orange Thursday, #FFA500)

As you are aware by now I  am one of the people in the field of MS who thinks EBV is the cause of MS. My position is essentially based on epidemiological evidence and causal inference. At the moment I honestly don’t know how EBV causes MS, but one hypothesis is that ongoing EBV infection in the CNS or in a peripheral compartment drives MS disease activity. EBV resides in memory B-cells and memory B-cell appears to be the main target of all effective MS disease-modifying therapies. 

The question is can we simply treat MS  by targeting EBV and not using a sledgehammer; i.e. depleting all B-cells (anti-CD20) or taking out the memory B-cell with non-selective immune reconstitution therapies (IRTs), e.g. AHSCT or alemtuzumab? One way to do this is to use anti-EBV drugs or cellular therapies targeting EBV infected cells. 

This is why one of my highlights at this meeting is Atara Bio’s phase-1 MRI data on using anti-EBV HLA-matched cytotoxic T-lymphocytes as a treatment for progressive MS. Study subjects who had sustained improvement in the EDSS showed a significant increase or improvement in their brain MTR (magnetization transfer ratio) at 12 months compared to baseline. MTR is an MRI marker of tissue integrity and is thought to represent tissue repair and remyelination. The important point for me is the MTR is an objective measure done using software and is blinded to the clinical information or treatment allocation. Having an objective measure on MRI that correlates with a relatively subjective clinical measure improves my confidence that what we are seeing may be real.

The other remarkable observation in this study is by how much some of the responders in this study improved. EDSS scores improved by well over one EDSS point with one patient improving by as much 2.5 points, i.e. from an EDSS of 5.5 to 3.0. Two other subjects went from EDSS 6.0 to 4.5; from needing a walking stick to walk 100m to be able to walk between 300m and 499m unassisted and without taking a rest. Outside of relapses, these sorts of EDSS improvements don’t happen in people with established progressive MS. This is almost as impressive as the Lazarus effect we see rarely in patients treated with steroids or plasma exchange for a relapse. The Lazarus effect describes those patients who go from EDSS 7.0+ (bed-bound) to getting up and walking within hours to days of being treated. 

Note: Lazarus of Bethany, also known as Saint Lazarus, or Lazarus of the Four Days, venerated in the Eastern Orthodox Church as Righteous Lazarus, the Four-Days Dead, is the subject of a prominent sign of Jesus in the Gospel of John, in which Jesus restores him to life four days after his death (source Wikipedia). 

The following are heat map tables from the poster in the patients who improved and those who didn’t improve. Green being an improvement and red is no improvement. Even in the so-called non-responders, some study subjects improved.  

The good news is Atara’s product is now in phase 2 as part of a blinded study and if it clears this hurdle a large phase 3 programme is planned. Prior to this data emerging my odds of this strategy working in MS would have been way below 50%; actually in the order of 2-5%. Now with objective MTR data correlating with such dramatic clinical improvements, my predictions have soared to now being above 50%, i.e. in the order of 50-67%. 


Pender et al. Updated open-label extension clinical data and new magnetization transfer ratio imaging data from a Phase I study of ATA188, an off-the-shelf, allogeneic Epstein-Barr virus-targeted T-cell immunotherapy for progressive multiple sclerosis. ECTRIMS 2021, P368.

Introduction: Mounting evidence suggests Epstein-Barr virus (EBV) is a necessary risk factor for development of multiple sclerosis (MS) [Abrahamyan et al. JNNP 2020]. Early experience with autologous EBV-specific T-cell therapy proved safe and may offer clinical benefit [Pender MP et al. JCI Insight 2018; Ioannides ZA et al. Front Neurol 2021].

Objectives/aims: Evaluate the safety and potential efficacy of ATA188 in adults with progressive MS in an ongoing open-label extension (OLE) study, including an imaging biomarker: magnetization transfer ratio (MTR).

Methods: In part 1 of this 2-part Phase I/II study, 4 cohorts received escalating doses of ATA188. Patients (pts) were followed for 1 year and could participate in a 4-year OLE. Sustained disability improvement (SDI; including expanded disability status scale [EDSS] and timed 25-foot walk), as well as safety, were measured [Pender MP et al. EAN 2020]. As a biomarker of improvement, change from baseline in MTR, an exploratory endpoint, was assessed.

Results: 25 pts received ≥1 dose of ATA188 and were followed for up to 33 mos (m). No grade >3 adverse events (AE), dose-limiting toxicities, cytokine release syndrome, graft vs host disease, or infusion-related reactions were observed. 2 treatment-emergent serious AEs were previously reported (muscle spasticity [grade 2; not treatment related]; MS relapse [grade 3; possibly treatment related]) and, as of April 2021, 1 was reported in the OLE (fall; grade 2; not treatment related). Efficacy was evaluated in 24 pts in the initial 12m period and, as of April 2021, in 18 pts in the OLE followed for up to 33m. 9 pts met SDI criteria either in the initial 12m period (n=7) or in the OLE (n=2); of these, 7 had sustained EDSS improvement. Of the 8 pts that achieved SDI and entered the OLE, 7 maintained SDI at all subsequent timepoints. Pts with sustained EDSS improvement (vs those without) had greater increases in MTR signal (in unenhancing T2 lesions and normal-appearing brain tissue) at 12m.

Conclusions: Preliminary data indicate ATA188 is well tolerated. Sustained EDSS improvement drove SDI in most pts, and in all but 1 pt, SDI was maintained at all subsequent timepoints. As a biomarker associated with disability, pts with sustained EDSS improvement (vs those without) showed greater increases in MTR signal at 12m, which may be suggestive of remyelination. The Phase 2 portion of this study, EMBOLD (NCT03283826), is ongoing and currently enrolling.

The following is Atara’s press release if you want more information. 

ATA188-ECTRIMS2021-PR_FINAL

Please note that I am a consultant to Atara and sit on their EBV/MS advisory board and advise them on their clinical development programme. 

Conflicts of Interest

MS-Selfie Newsletter  /  MS-Selfie Microsite

Preventive Neurology

Twitter   /  LinkedIn  /  Medium

General Disclaimer: Please note that the opinions expressed here are those of Professor Giovannoni and do not necessarily reflect the positions of the Barts and The London School of Medicine and Dentistry nor Barts Health NHS Trust and are not meant to be interpreted as personal clinical advice. 

Black Swan

Most of you know by now that I am one of the main proponents supporting EBV as the primary cause of MS. I think EBV is actively driving MS disease activity. The corollary to this statement is that we may be able to treat MS with anti-EBV drugs. We have suggested that all MS DMTs work by affecting memory B-cell biology and that this is the cell that host the EB virus. At Barts-MS, we have an active research programme to test anti-EBV drugs in MS.

One way of targeting EBV is via immunotherapy and Michael Pender, from Brisbane, has been promoting this strategy for over a decade. His data on using autologous ant-EBV CTLs (cytotoxic T-lymphocytes) is impressive. Almost too good to be true! Most of the MS community has dismissed his data as being biased due to being unblinded and from one centre. However, if you drill down into his data you will see that most of the MSers he has treated have had quite advanced disease with high EDSS scores and the improvements in disability have been so profound that it would be difficult to ascribe this to biased EDSS-rating. I am convinced that Michael Pender is onto something big and something very important.

This is why the ATARA Bio early phase 1b data is my one of my #ECTRIMS2019 highlights. Instead, of autologous cells, ATARA Bio is using MHC-matched allogenic CTLs. The good news from their poster presentation is that these cells seem safe as a treatment and at the high doses they are reproducing Pender’s single-centre results.

I agree it is too early to be jumping up and down and that we need to wait for the results of a randomised double-blind controlled study, but imagine a world in which we treat MS with anti-EBV CTLs and our MSers notice profound improvements in disability? This would be a true paradigm shift, a black swan event! Overnight MS would be classified as an infectious disease. Could you imagine what would happen to the MS DMT market? I sincerely hope for the MS community that this remarkable story pans out to be true.

Prof G’s ECTRIMS Highlight #2

Pender et al. Preliminary safety and efficacy of ATA188, a pre-manufactured, unrelated donor (off-the-shelf, allogeneic) Epstein-Barr virus-targeted T-cell immunotherapy for patients with progressive forms of multiple sclerosis. ECTRIMS 2019 Abstract: P1657.

Introduction: Evidence suggests Epstein-Barr virus (EBV) infection is associated with multiple sclerosis pathogenesis. In patients (pt) with progressive forms of MS (pMS), autologous EBV-specific T cells may prevent progression and improve symptoms (Pender, et al. JCI Insight. 2018).

Objectives: To evaluate ATA188, an off-the-shelf, allogeneic, EBV-targeted T cell immunotherapy comprised of HLA-matched, in vitro-expanded, cytotoxic T lymphocytes in a first-in-human, multicenter, 2-part study in adults with pMS (NCT03283826). Preliminary data are reported.

Methods: Eligible pt (age 18‒< 66) are EBV-seropositive with pMS and an Expanded Disability Status Scale (EDSS) score of 3‒7. Cohorts (cht) 1‒4 (6‒9 pt/cht) receive escalating doses of ATA188. 1° endpoints: safety and identification of the recommended phase 2 dose (RP2D) of ATA188. Efficacy criteria: EDSS, MS Impact Scale-29, Fatigue Severity Scale, and 12-Item MS Walking Scale scores; timed 25-foot walk; 9-hole Peg Test; and visual acuity. A responder (R) has sustained ≥ minimal clinically significant (MCS) improvement from BL in 2 consecutive evaluations on ≥2 efficacy criteria; a partial responder (PR) has ≥ MCS improvement from baseline (BL) in any 1 evaluation on ≥2 efficacy criteria; and a non-responder (NR) has ≥ MCS decline from BL in any 1 evaluation on ≥2 efficacy criteria (if both criteria are met, pt is NR). Plasma inflammatory biomarkers (IL-2, IL-1β, TNF-α, IL-6) are monitored throughout treatment.

Results: As of 27 May 2019, 19 pt (53% male; median age, 56 years) have enrolled (6 in each of cht 1‒3; 1 in cht 4) and received ≥1 dose of ATA188. Treatment-emergent AEs (TEAE) occurred in 63% (12/19) pt and treatment-related AEs (TRAE) in 37% (7/19) pt; 1 pt (cht 2) had a grade ≥ 3 TEAE, and 1 (cht 4) had a serious TRAE. No dose-limiting toxicities or fatal TEAE have been reported. Efficacy data are available for cht 1 and 2: cht 1, 1 R, 1 PR, and 4 NR at 6 months and 1 R, 0 PR, and 1 NR at 12 months; cht 2, 2 R, 4 PR, and 0 NR at 6 months. On measures of disability, 3/6 showed improvement and 3/6 showed decline in cht 1; 4/6 showed improvement and 1/6 showed decline in cht 2. Inflammatory cytokines remained at or near baseline.

Conclusion: Preliminary data indicate ATA188 is well tolerated and improves efficacy measures in adults with pMS, even at lower doses. These results support continuing part 1 to identify RP2D for part 2, (randomized, double-blind, placebo-controlled portion).

Pender et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight. 2018 Nov 15;3(22). pii: 124714. doi: 10.1172/jci.insight.124714.

BACKGROUND: Increasing evidence indicates a role for EBV in the pathogenesis of multiple sclerosis (MS). EBV-infected autoreactive B cells might accumulate in the CNS because of defective cytotoxic CD8+ T cell immunity. We sought to determine the feasibility and safety of treating progressive MS patients with autologous EBV-specific T cell therapy.

METHODS: An open-label phase I trial was designed to treat 5 patients with secondary progressive MS and 5 patients with primary progressive MS with 4 escalating doses of in vitro-expanded autologous EBV-specific T cells targeting EBV nuclear antigen 1, latent membrane protein 1 (LMP1), and LMP2A. Following adoptive immunotherapy, we monitored the patients for safety and clinical responses.

RESULTS: Of the 13 recruited participants, 10 received the full course of T cell therapy. There were no serious adverse events. Seven patients showed improvement, with 6 experiencing both symptomatic and objective neurological improvement, together with a reduction in fatigue, improved quality of life, and, in 3 patients, reduced intrathecal IgG production. All 6 patients receiving T cells with strong EBV reactivity showed clinical improvement, whereas only 1 of the 4 patients receiving T cells with weak EBV reactivity showed improvement (P = 0.033, Fisher’s exact test).

CONCLUSION: EBV-specific adoptive T cell therapy was well tolerated. Clinical improvement following treatment was associated with the potency of EBV-specific reactivity of the administered T cells. Further clinical trials are warranted to determine the efficacy of EBV-specific T cell therapy in MS.

TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, ACTRN12615000422527.

FUNDING: MS Queensland, MS Research Australia, Perpetual Trustee Company Ltd., and donations from private individuals who wish to remain anonymous.

CoI: multiple