#MSCOVID19 – the fourth wave

Barts-MS rose-tinted-odometer: ★★★ (a blueish-green Thursday; looking forward to being a weekend warrior  #0d98ba )

My heart sank when I saw the latest COVID-19 UK case numbers. Here we go again? I don’t think so simply because the vaccines are working as well as the protective immunity induced by wild-type SARS-CoV-2 infection. I just wish the Government would take a pragmatic approach to the science and allow people who have been vaccinated (double-dose) and with confirmed previous SARS-CoV-2 infection to get back to normal. 

It is clear from Israel that people who have had COVID-19 are as immune as vaccinated people to (re)infection with the virus. This will almost certainly apply to the circulating variants that as yet are not immune escape variants, i.e. capable of reinfecting large numbers of people who are meant to be immune to SARS-CoV-2. 

The biggest concern with the current Indian or Delta SARS-CoV-2 variant is that it is more transmissible and more virulent, which means people who are not vaccinated are taking a big risk. This is very relevant to the East end of London where the vaccination rates in adults are below 50% because of significant vaccine hesitancy in the local population. We are therefore at high risk of a significant fourth wave of infections, which will have implications for our hospital and other services, including the MS service. We really need some respite from fighting and dealing with COVID-19 so that we can get back to normal or at least near normal. So please think carefully about resisting vaccination; you are not only putting yourself at risk but are impacting the health of others.

Please remember that COVID-19 and SARS-CoV-2 are going nowhere soon and will almost certainly become endemic, i.e. the virus and its variants will remain with us forever. So if you have not been vaccinated you will at some point in time get exposed to SARS-CoV-2 and get COVID-19. The risks of COVID-19 and its consequences, including long-COVID, are orders of magnitude worse than the risks of the vaccine. Therefore please #GetVaccinatedASAP. In my opinion there really are very few reasons to say no! Do you agree?

Goldberg et al. Protection of previous SARS-CoV-2 infection is similar to that of BNT162b2 vaccine protection: A three-month nationwide experience from Israel.  medRxiv preprint doi: https://doi.org/10.1101/2021.04.20.21255670.

Worldwide shortage of vaccination against SARS-CoV-2 infection while the pandemic is still uncontrolled leads many states to the dilemma whether or not to vaccinate previously infected persons. Understanding the level of protection of previous infection compared to that of vaccination is critical for policy making. We analyze an updated individual-level database of the entire population of Israel to assess the protection efficacy of both prior infection and vaccination in preventing subsequent SARS-CoV-2 infection, hospitalization with COVID-19, severe disease, and death due to COVID-19. Vaccination was highly effective with overall estimated efficacy for documented infection of 92·8% (CI:[92·6, 93·0]); hospitalization 94·2% (CI:[93·6, 94·7]); severe illness 94·4% (CI:[93·6, 95·0]); and death 93·7% (CI:[92·5, 94·7]). Similarly, the overall estimated level of protection from prior SARS-CoV-2 infection for documented infection is 94·8% (CI:[94·4, 95·1]); hospitalization 94·1% (CI:[91·9, 95·7]); and severe illness 96·4% (CI:[92·5, 98·3]). Our results question the need to vaccinate previously-infected individuals.

Conflicts of Interest

Preventive Neurology

Twitter

LinkedIn

Medium

General Disclaimer: Please note that the opinions expressed here are those of Professor Giovannoni and do not necessarily reflect the positions of the Barts and The London School of Medicine and Dentistry nor Barts Health NHS Trust and are not meant to be interpreted as personal clinical advice. 

#MSCOVID19: Cladribine 3 vs. Ocrelizumab 1 vs. Fingolimod 0

Barts-MS rose-tinted-odometer: ★★★★★

Finally, the early Israeli COVID-19 vaccine seroconversion rates are out as a peer-reviewed publication. This data is not new but comes with being vetted by the scientific community and hence can be quoted and discussed at scientific meetings.

Protective humoral immunity was 97.9% in healthy subjects, 100% untreated pwMS, 100% in cladribine-treated pwMS, 22.7% in ocrelizumab-treated pwMS and 3.8% in fingolimod-treated pwMS. As I have said before this is only half the story and we need to know what happens on the T-cell side. 

IgG antibodies to the virus implies a good T-cell response as well; this is because to class switching to IgG happens in the germinal centres with T-cell help. The corollary does not necessarily hold, i.e. if you don’t make IgG antibodies you can’t assume that vaccine-induced T-cell responses are absent. This is why I predict, based on the fact that both ocrelizumab and fingolimod treated pwMS recover from COVID-19 implying their T-cells are working and helping to clear the virus, that both ocrelizumab- and fingolimod-treated patients are likely to have some T-cell immunity to SARS-CoV-2 spike protein post-vaccination. 

Please note this is a prediction and we will need to wait for more detailed immunological studies. Even if patients on these agents have some T-cell responses the question will remain whether this blunted vaccine-induced immunity against SARS-CoV-2 will be sufficient to protect these patients against getting COVID-19 or repeated episodes of COVID-19? This question will take much longer to answer, but I suspect this limited immunity won’t be sufficient because vaccine immunity is likely to wane with time and new immune escape variants of SARS-CoV2 will emerge. Already public health officials are planning for rounds of booster vaccines to cover new variants. What this means is that vaccine-readiness will become uppermost in the minds of pwMS and HCPs when deciding on which DMTs to choose for particular patients.

The good news is that if you have MS and have been treated with cladribine there is no blunting of vaccine-induced responses. This is not surprising and was predicted based on the immunology of cladribine and justifies my previous blog post taking the NMSS to task on their ill thought out initial COVID-19 vaccine guidelines. Fortunately, these have been updated and pwMS on cladribine can be confident to go ahead with getting vaccinated ASAP. 

Figures from Ther Adv Neurol Disord 2021, Vol. 14: 1–8.

I would extrapolate the ocrelizumab vaccine data to the other anti-CD20 therapies, i.e. rituximab, ofatumumab and ublituximab, but not necessarily the fingolimod data to the other S1P modulators. There is evidence that fingolimod not only traps lymphocytes in lymph nodes but also depletes lymphocytes. In comparison to fingolimod, ozanimod and ponesimod deplete lymphocytes less intensely and at least for ponesimod, the recovery of lymphocytes is very rapid implying lymphocytes are not depleted on this drug.  So I would not be surprised if ponesimod, and possibly ozanimod, have less of an effect on vaccine responses than fingolimod. As for siponimod, I predict it will be closer to fingolimod in terms of its effect on neoantigen (new antigen) vaccine responses such as the COVID-19 vaccines. 

Does this data change anything about my current practice? No, not really, it is entirely in keeping with what I predicted. My advice is still #GetVaccinatedASAP. This data however may impact what treatment patients with MS decide to start off on; if vaccine responses are important to you, say for travel and/or work reasons, you may want to avoid S1P modulators and anti-CD20 therapies.

Please note I have put on my rose-tinted glasses; the sun is shining outside and spring is wonderful 😉

Achiron et al. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther Adv Neurol Disord 2021, Vol. 14: 1–8.

Background and Aims: The National Multiple Sclerosis Society and other expert organizations recommended that all patients with multiple sclerosis (MS) should be vaccinated against COVID-19. However, the effect of disease-modifying therapies (DMTs) on the efficacy to mount an appropriate immune response is unknown. We aimed to characterize humoral immunity in mRNA-COVID-19 MS vaccinees treated with high-efficacy DMTs.

Methods: We measured SARS-CoV-2 IgG response using anti-spike protein-based serology (EUROIMMUN) in 125 MS patients vaccinated with BNT162b2-COVID-19 vaccine 1 month after the second dose. Patients were either untreated or under treatment with fingolimod, cladribine, or ocrelizumab. A group of healthy subjects similarly vaccinated served as control. The percent of subjects that developed protective antibodies, the titer, and the time from the last dosing were evaluated.

Results: Protective humoral immunity of 97.9%, 100%, 100%, 22.7%, and 3.8%, was observed in COVID-19 vaccinated healthy subjects (N = 47), untreated MS patients (N = 32), and MS patients treated with cladribine (N = 23), ocrelizumab (N = 44), and fingolimod (N = 26), respectively. SARS-CoV-2 IgG antibody titer was high in healthy subjects, untreated MS patients, and MS patients under cladribine treatment, within 29.5–55 days after the second vaccine dose. Only 22.7% of patients treated with ocrelizumab developed humoral IgG response irrespective to normal absolute lymphocyte count. Most fingolimod-treated MS patients had very low lymphocyte count and failed to develop SARS-COV-2 antibodies. Age, disease duration, and time from the last dosing did not affect humoral response to COVID-19 vaccination.

Conclusions: Cladribine treatment does not impair humoral response to COVID-19 vaccination. We recommend postponing ocrelizumab treatment in MS patients willing to be vaccinated as a protective humoral response can be expected only in some. We do not recommend vaccinating MS patients treated with fingolimod as a protective humoral response is not expected.

Conflicts of Interest

Preventive Neurology

Twitter

LinkedIn

Medium

General Disclaimer: Please note that the opinions expressed here are those of Professor Giovannoni and do not necessarily reflect the positions of the Barts and The London School of Medicine and Dentistry nor Barts Health NHS Trust.

Exit mobile version
%%footer%%